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Abstract

We present and implement an error estimation protocol in theInsight Toolkit(ITK) for assessing the
accuracy of image alignment. We base this error estimation on a robust version of the Hausdorff Distance
(HD) metric applied to the recovered edges of the images. Therobust modifications we introduce to
the HD metric significantly reduce the amount of outliers in the local distance error estimation. We
evaluate the accuracy of our protocol on synthetically deformed images. We provide the source code
and datasets to reproduce this evaluation. The proposed method is shown to improve error assessment
when it is compared with conventional HD methods. This approach has many applications including
local estimation and visual assessment of registration error and registration parameter selection.
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1 Introduction

Assessing the accuracy of image alignment is a vital step in image registration. Accuracy assessment is
essential for verification of registration quality, comparison of registration results, and registration parameter
selection. However, estimating registration accuracy is achallenging problem for the medical imaging
community. Clinical application of registration methods require the validation of registration results, but
this validation can only be performed on cases where ground truth is known (cadavers, invasive markers,
phantoms). The ability to assess registration quality of non-rigid brain registration during image guided
neurosurgery is limited; an expert can assess quality by locating a series of clearly identifiable landmarks
or regions in both intra-operative and pre-operative images. Arguably, this may provide the best precision,
but the assessment is limited to the easily identifiable landmarks. This method is also time consuming and
requires the involvement of an expert which may not be practical during neurosurgery, when comparison of
thousands of registrations is necessary. Consider a scenario when the optimum parameters of a registration
method are not known, and we need to perform a large scale parametric search for the best parameter
configuration. In this case, we are facing comparison of hundreds and even thousands of registration results,
which in practice is only feasible using automatic or seim-automated approaches. We attempt to automate
this assessment process through the implementation of local similarity metrics.

Although, similarity metrics are no substitute for validation, similarity metrics have been used to assess reg-
istrations. They can provide confidence in the registrationresult as well as criteria for comparison between
registration methods and parameters.One common shortcoming of this approach is that similarity metric
values do not provide quantification in terms of distance in physical space.Thus, one has the ability to track
improvements among registrations but cannot speculate about the degree of misalignment

One approach to this problem is the use of Hausdorff Distance(HD) metric. The HD metric is derived from
Euclidean distances between point sets and thus related to local alignment distances unlike many other im-
age similarity measures. The original HD metric is highly sensitive to noise [6], but variations of the metric
have been proposed to improve the robustness of the metric. Asurvey of these modifications can be found
in [13, 3]. Even with the correspondence to physical space, HD based metrics have scarcely been used for
assessment of image alignment. They were used by Morain-Nicolier et. al [8] to quantify brain tumor evo-
lution and later by Archip et al. [1, 2] to assess performance of non-rigid image registration of brain MRI.
To our knowledge no formal study has been completed to investigate the use of HD as an accuracy assess-
ment measure for image alignment. We evaluate existing metrics and implement an automated assessment
approach based on a robust variation of the HD metric. We provide three ITK filters for local assessment
and implement an evaluation framework for comparison of these methods. Based on our findings, our robust
HD approach can significantly improve the results as compared to the previously used version of HD.
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2 Methods

Problem: assess accuracy of alignment between two images,I andJ.

We develop a method to solve this problem through estimationof point-wise alignment error. The HD
metric operates on sets of points, and in order to apply it to the problem we need first to identify such
(feature) points in the images. Consistency of feature points identification is essential to the robustness and
correctness of the metric. Thus, prior to local estimation,several preprocessing steps must be employed on
the input images.

First, we smooth the input images using anisotropic diffusion [9] to filter out noise. Anisotropic diffusion
smoothing is chosen because it preserves features and all ofthe similarity metrics we examine are based
on comparison of features of images rather than intensities. Second, adaptive contrast equalization [12] is
performed to improve the edge detection results. Third, edges are identified with a Canny edge detection
filter [4]. Thresholds for Canny edge detection are adaptively selected using binary search to have approxi-
mately the same number of edges in each image. The number of edge points is controlled by changing the
upper and lower values of the threshold parameters in the edge detector [4]. All preprocessing steps were
implemented using ITK filters. The implementation details can be found in Section5.

Figure 1: Binary image (gray/white cells)
with corresponding grayscale image (D=3)
overlaid.

Once the feature edges (points) are identified in both images,
we can depart from the images and analyze the alignment ac-
curacy by working with the two sets of points. LetA andB be
the set of binary images created from extracting features from
I andJ, respectively, andA = {a1,a2, ...} andB = {b1,b2, ...}
be the corresponding set of feature points (non-zero pixels).
The directed HD between these two sets of points,h(A,B), is
defined as the maximum distance from any point in A to any
point in B. The symmetric HD,H(A,B) is the maximum of
both direct distances [6]:

h(A,B) = max
a∈A

(d(a,B)),whered(a,B) = min
b∈B

‖a−b‖ (1)

H(A,B) = max(h(A,B),h(B,A)) (2)

HD provides a global comparison of similarity, and was used
by Archip et al. [1, 2] to estimate the alignment of brain MRI images after non-rigid registration.However,
the notion of local similarity is lost.For example, HD values can remain constant whether a set of images
are misaligned in just one region or many regions. The local distance map (LDMap) proposed by Baudrier
et al. [3] is more suitable for point-wise error estimation.

The LDMap derives a local measure of dissimilarity for 2D binary images by comparing images locally with
a sliding window, whereH(A,B) is used as a dissimilarity measure within the window.

∀x∈ R3 : Hloc(x) = |1A (x) −1B (x)|×max(d(x,A),d(x,B)), (3)

1A x =

{

1 if A (x) 6= 0
0 otherwise

whereA (x) is the voxel value of A at location x.
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Remark 1. The conventional H(A,B) can be derived by taking the maximum of the local,Hloc, comparisons.
i.e., H(A,B) = max(Hloc(A,B))

LDMap is parameterless and yields a more descriptive measure of local similarity than HD, but the LDMap
as described by Baudrier et al. [3] does not improve robustness of local estimation. Ideally,we are looking
for a measure which is equal or analalogus to the distance between corresponding points in the two images.
However, this cannot be assumed for HD, since HD has no point-to-point correspondence.

In this paper we extend the definition of LDMap by adding the notion of correspondence by using a grayscale
modification of the HD. Grayscale HD was proposed by Zhao et al. [13] for matching 2D images corrupted
by noise. We extend this grayscale HD definition to 3D for medical image comparison and include it within
the LDMap definition.

Given two input binary images,A and B, let Ã and B̃ be the grayscale images whose voxel values are
initialized to the number of non-zero voxels in constant size neighborhood of the corresponding binary
image.Ã andB̃ have the same size and boundary as the initial binary images.The neighborhood is isotropic
and of sizeD x D x D. Figure1 provides a 2D example withD = 3. This modification improves the sense of
point correspondence while calculating point distances because the corresponding point in the second image
is likely to have similar or same number of neighbor feature points. The directed distanced(ag, B̃) where
g is the grayscale value at voxela is defined as the minimum distance from pointa to any point inB̃ with
grayscale value within some tolerance,t, of g. The tolerance allows to adjust the sensitivity to differences in
edge images (i.e., from resampling, different imaging device, etc.).

d(ag, B̃) = min
bg′∈B̃

‖ag−bg′‖, g− t ≤ g′ ≤ g+ t (4)

Using Equation4 we define the local grayscale HD,GHloc as follows:

∀x∈ R3 : GHloc(x) = |1A (x) −1B (x)|×max(d(xg, Ã),d(xg, B̃)). (5)

Similar to the Hausdorff Distance, Grayscale Hausdorff Distance (GHD)GH(A,B) is defined as the maxi-
mum of the local calculations,GH(A,B) = max(GHloc(A,B)).

In addition, we further improve the robustness of GrayscaleHausdorff Distance by applying robust statistics.
Let RGHloc(x) be the local Robust Grayscale Hausdorff Distance of imagesA andB at voxelx, and letWx be
an isotropic window of sizeSx Sx Scentered aroundx. RGHloc(x) is defined as the robust average calculated
from the voxels insideWx. Least trimmed squares [11] is a reasonable choice for this robust average, but
other averages can be employed to improve robustness. We define the Robust Grayscale Hausdorff Distance
(RGHD)RGH(A,B) = max(RGHloc(A,B)).

The complete diagram of the alignment accuracy assessment framework, together with the parameters used
at each step, is depicted in Figure2.

3 Experimental Framework

We evaluate the effectiveness of the proposed accuracy assessment methodology for non-rigid registration
of brain MRI using the synthetic ground truth data. First we use the method described by Rogelj et al. [10] to
construct a synthetic deformation field. The synthetic deformation field is applied to the original grayscale
image, followed by feature detection step performed on boththe original and deformed images. The pro-
posed error recovery methodology is then employed to estimate the misalignment between the original and
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Figure 2: The basic components of the assessment framework:(1) preprocessing of input images, (2) com-
putation of local distance metric on edge images and (3) robust smoothing of local distance map.

Figure 3: Random deformation vectors are generated at the knots (red circles) of the deformation field grid
that are located within the user-defined mask.
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the deformed images at the selected feature points. The truemisalignment value, which is the magnitude of
the synthetic deformation at a point, ideally should be equal to the error value recovered by the either of the
proposed assessment measures.

In order to create the synthetic deformation field, we first construct a sparse point sample at the knots of
an isotropic sampling grid. This procedure is illustrated in Figure3, where point sample is shown with red
circles. We assign a random deformation vector at each of these points, with the components of the vector
drawn from a Gaussian distribution parametrized by mean(µ = 0) and variance(σ). The dense deformation
field is constructed by using Thin Plate Splines interpolation at non-knot image points within the binary
mask.

The current implementation of the synthetic deformation isnot provided as a generic class. Instead, we
have separate tools to construct 2D and 3D deformation fields. The deformation fields are parametrized by
the sampling grid spacing and the variance of the Gaussian distribution, which should be provided by the
user, together with the binary mask of the region of interest. itk::ThinPlateSplineKernelTransformis used
to interpolate the values of the dense deformation field at non-grid pixels

We compare the local estimation methods with ground truth error using two measures: distribution of error
and percentage of outliers. Ideally, the distribution of local error estimates (Hloc, GHloc andRGHloc) will
closely mimic the true error distribution. Also, a good estimate of error should have minimum number of
outliers. Letdi be the local distance at point locationi measured by a local estimation method andei be
the true error at the same point. We define outliers as any point i where|di −ei | > 2mm. We choose 2 mm
because the deformation field is in physical space and the HD distance implementation is limited to 1 mm
image spacing. Thus, errors as large as

√
3 cannot be prevented.

4 Results

We present results for each of the described metrics (HD, GHD, RGHD) using the evaluation framework
described in Section3 for both 3D and 2D images. The 3D images are not provided with this submission due
to possible copyright issues, but can be freely downloaded from BrainWeb Simulated Brain Database [5, 7].
We used the following settings for constructing the simulated image: Modality=T1, Slice thickness = 1mm,
Noise ={0%,9%} and RF=0%. The 2d images accompanying this paper were taken from the example data
provided with ITK (ITK/Examples/Data/BrainProtonDensitySliceBorder20.png, BrainProtonDensitySlice-
Border20Mask.png).

4.1 3D Image Results

The 3D results presented in this paper are produced using thefollowing parameters. The variance parameter,
σ, of the Synthetic Gaussian deformation was set to the integer values between 1 and 12 to get increasingly
more complex deformations. The deformation grid spacing was set at 30 mm for all test cases. These
settings create displacements with a maximum of 12 mm and an average between 1 and 4 mm, depending
on variance. Parameters for GHD include: neighborhood size, for creation of grayscale images, set toD = 3
and tolerance forGHDloc(x), t = 2. RGHD used a least trimmed squares robust metric with percentage set
to 80% and window size,Wx = 11. We are able to incorporate the use of noisy images in our evaluation
because Brainweb provides a simulation of noisy images, andthus we evaluate local alignment assessment
between undeformed images with 0% noise and deformed imageswith 0% and 9% noise.

The error distributions for: the actual error,Hloc, GHloc, andRGHloc for σ = 5 of the synthetic deformation

http://www.itk.org/Doxygen/html/classitk_1_1ThinPlateSplineKernelTransform.html
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Figure 4: Distribution of the error and the HD, GHD, and RGHD values for the same synthetic deformation
case (3D BrainWeb image, Gaussian deformation, variance 5).
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Figure 6: Global error statistics (i.e. HD, 95%HD, RGHD) forsynthetically deformed 3D BrainWeb images
with and without noise. RGHD results were derived from RGHloc values.

are shown in Figure4. Other variances had similar results. The distribution ofRGHloc is an improved
approximation of the error distribution overHloc andGHloc.

As expected the data in Figure5 indicates thatRGHloc is also the most robust method. Figure5 displays
the percentage of outliers in the set of local distance estimations. RGHloc remains at a low percentage of
outliers throughout the 3D testing.GHloc also provides improved robustness over theHloc estimations. For
best results, we recommend the use ofRGHloc when deformations of magnitude 3mm to 7mm are present.

The error distribution and outliers help to build confidencein the robustness and accuracy of the local
estimates. Next we examine the use of robust local estimation methods for non-rigid registration of brain
MRI comparison. Our hypothesis is that summary statistics of local estimations provide a more robust
global statistic for comparison purposes. We test this hypothesis by examining the 95% percentile of the
local estimates at each variance and compare it with the results obtained with the conventional HD and
the 95% PHD used by Archip et al. [1, 2]. These results are presented in Figure6. RGHD tracks the
improvement well (i.e. increasing constantly w.r.t. error) even in the presence of noise. Moreover, RGHD
values consistently over-estimate (upper-bound) the truemean error. This is expected because the robust
metrics are based on the assumption that the majority of outliers are underestimates and thus the calculated
mean increases. The use of other summary statistics (RMS, LTS) on the local estimates may improve this
discrepancy, but the study of these statistics is left to future work.

4.2 2D Image Results

We evaluate alignment assessment between the undeformed and deformed 2D ITK images with the follow-
ing parameters. The deformation field is created with:σ = {1,2,3, ..,12} and spacing = 30mm. Defor-
mation vectors with magnitude averaging between 1.5mm to 7mm are observed, magnitudes increase with
variance. A maximum deformation of 9mm occurs atσ = 12. The parameters for local estimation parame-
ters are based on the 3D results: neighborhood ofGHloc, D = 3, tolerance of grayscale,t = 1, window size
of RGHloc, Wx = 11, and percentage = 80%. Adjustments of these parameters may cause different results.
A more exhaustive study of parameter selection will be performed in the future and reported in upcoming
updates of this document.
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Figure 7: Distribution of the error and the HD, GHD, and RGHD values for the same synthetic deformation
case (2D ITK image, Gaussian deformation, variance 8).

Similar to the results in 3D data, RGHD provides the closest approximation to true error distribution with 2D
images, see Figure7. However, as seen in Figure5 the outliers for RGHD are not as low with the 2D images.
Many factors could contribute to this difference includingthe parameters chosen and the deformation field
itself. Although, the variances were set to the same values,the deformation magnitudes are slightly higher
on average in 2D image tests. The RGHD is still shown to be the most robust method compared.

We also examined the use of local estimation for visualizingthe error in Figure8. We color the LDMap
created byRGHloc estimations, allowing visualization of the magnitude of error throughout the image.

5 Implementation

The presented local error estimation methods have been implemented in three n-dimensional image
to image filters: itk::LocalDistanceMapImageFilter, itk::LocalGrayscaleDistanceMapImageFilter, and
itk::LocalDistanceMapSmoothingImageFilter. In addition, the entire alignment assessment process is im-
plemented in RunAssessment.cxx. In Figure5 we present the entire framework for our evaluation of local
assessment methods. Descriptions of each of these filters and their use is described in the following sections.
Two helper classes were also implemented. itk::CountImageFilter assists in the conversion of a binary image
to its grayscale counterpart by implementing a simple counter of non-zero voxels in a predefined neighbor-
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Figure 8: Local estimation of misalignment using RGHD. Left: Undeformed 2D image. Center: Deformed
image, Gaussian variance of 8 mm. Right: LDMap of the deformed and undeformed images using RGHD,
color-coded, mm.

hood region. itk::errorStatistics is used to calculate descriptive error statistics from the robust LDMap image,
see Figure2.

5.1 itk::LocalDistanceMapImageFilter

itkLocalDistanceMapImageFilter is the ITK implementation of local HD metric as described in Section2.
This filter is derived from the itk::ImageToImage filter and is templated over the two input images and the
output image. This filter requires two distance maps as input. It outputs a local distance map with values of
each voxel, x, equal toHloc(x).

This processing step does not have any parameters, and the only methods of relevance are those that provide
the set and get functionality for the filter inputs:

• SetInput1(const TDistance1 *), GetInput1()

• SetInput2(const TDistance1 *), GetInput2()

The class is multi-threaded and the entire algorithm is contained in ThreadedGenerateData().

5.2 itk::LocalGrayscaleDistanceMapImageFilter

We implemented a local grayscale Hausdorff filter based on the definition in Section2. Similar to the
previous filter, itk::LocalGrayscaleDistanceMapImageFilter is derived from the itk::ImageToImage filter
and is templated over its two input images and one output image. This filter takes two binary edge images
as input and outputs a local distance map with values of each voxel, x, equal toGHloc(x).

The first step is the construction of the grayscale image fromthe input binary image, as shown in Figure1.
This step is facilitated by the helper class itk::CountImageFilter we implemented, and is parametrized by the
neighborhood radius value. As described in Section2, to find theGHloc(x) values we must perform a search
at each feature point, for the nearest neighbor features with values within a given range,g− t ≤ g′ ≤ g+ t.
Exhaustive search is computationally expensive, instead theGHloc(x) values are computed by performing an
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Figure 9: Components for evaluation of accuracy alignment.

expanding search with maximum radius, MaxDef, which is another parameter of the filter. MaxDef should
be chosen based on the estimated maximum deformation value expected. The indices for the expanding
search are determined in BeforeThreadedGenerateData().

The input methods for this filter are:

• SetInput1(const TEdge1 *), GetInput2()

• SetInput2(const TEdge1 *), GetInput2)

The following parameters for this filter can be manipulated through Set/Get functions:

• MaxDef: This controls the search radius for finding the nearest neighbor, should be set to the max-
imum deformation possible (e.g. 10% of adult brain size). Ifno feature point is found within the
search radius, the voxel is set to an unrealistic value (-100).

• Tol: the tolerance, t, for the local grayscale Hausdorff metric. Higher values of t, will create smaller
distances, but the distictiveness of corresponding pointswill decrease.

• Radius: radius of the neighborhood size,D, (2× radius+1 = D), for which the grayscale images are
created. Typical values used are 1 to 4.

The class is multi-threaded. The generation of grayscale images is performed in BeforeThreadedGenerate-
Data(), but the rest of the calculations for local GrayscaleHD is contained in ThreadedGenerateData().
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5.3 itk::LocalDistanceMapSmoothingImageFilter

itk::LocalDistanceMapSmoothingImageFilter is a smoothing filter designed specifically for post-processing
of the local distance map to obtain the values ofRGHloc as described in Section2. This filter applies a
robust average within a window centered around a feature point. The filter only takes into account feature
points. It accomplishes this by using “edge” (feature point) images as a mask during computation. The local
robust grayscale Hausdorff distances (RGHloc) are computed by applying this filter to the local distance map
created by itk::LocalGrayscaleDistanceMapImageFilter.

The input methods for this filter are:

• SetInput1(const TEdge1 * ), GetInput1() the first edge image, typically used to create local distance
map

• SetInput2(const TEdge2 * ), GetInput2() the second edge image, typically used to create local distance
map

• SetInput3(const TDistance1 * ), GetInput3() the local distance map

The parameters for this filter are manipulated by Get/Set commands:

• Radius: the radius,(2× radius+1 = S), of the window used for robust averaging

• MinElements: the minimum number of feature points needed to compute average. If below minimum
assume there is no confidence in region and voxel set to unrealistic value (-100).

• Percent: the percentage used for the robust statistic, (i.e.|1− percent| is discarded in least trimmed
squares)

Function GetRobustStat(std::vector) computes the robuststatistic on the distances inside the window. Cur-
rently, only LTS is implemented, but other robust statistics could easily be added. As with the other filters,
this filter is multi-threaded and derived from the ImageToImage filter.

5.4 RunAssessment.cxx

An example code for running the complete alignment assessment process on two images is pro-
vided in RunAssessment.cxx. Three basic components of the process (preprocessing, local distance
map generation, robust smoothing) are each implemented. The preprocessing is performed using
three ITK filters: itk::CannyEdgeDetectionImageFilter, itk::CurvatureAnisotropicDiffusionImageFilter, and
itk::AdaptiveHistogramEqualizationImageFilter. Smoothing and contrast enhancement parameters are
fixed, based on experimental results. If necessary, these parameters can be changed manually. The re-
maining parameters are manipulated through the use of a configuration file. The configuration file is the
only argument for the program. An example configuration file is provided in setup.dat.

Parameters listed in this file include: two input images, image masks, percent of edges to be detected,
output file name, contrast enhancement flag (0=on, 1=off), metric choice (HD, GHD, or RGHD), radius for
grayscale image creation, tolerance for GHD, maximum deformation expected (radius of search window)
for GHD, radius of smoothing window, percentage for robust statistic, and minimum number of elements
for smoothing window.
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As well as creating a local distance map, RunAssessment.cxxoutputs local distance estimation statistics to
the standard out. These global statistics include maximum,root mean square, 90% percentile, mean, least
trimmed squares, and least median squares.

5.5 DFGenerator.cxx

The synthetic Gaussian deformation used to obtain the results in the paper, as described in Section2, is
implemented in DFGenerator.cxx. Two versions of DFGenerator have been implemented (2D and 3D). An
N-d implementation as an ITK class is left as a future work. The deformation vectors are selected using
itk::GaussianDistribution and then interpolation is doneusing itk::ThinPlateSplineKernelTransform. The
deformation field is controlled through the spacing and variance arguments. The program outputs all of the
details necessary to recreate the deformation: the deformed image, deformation field, deformed mask, and
deformation norm.

5.6 Evaluation.cxx

A simple evaluation tool is also included, evaluation.cxx.This tool is used to compare “ground truth” (i.e.
deformation field norm) to local distance estimation. The program iterates through the two input images,
comparing the difference in corresponding voxels, and calculates the percentage of outliers as defined in
Section2. In addition, this program outputs the percentage of outliers that are underestimates. An un-
derestimate is defined as any voxel in the local distance estimation whose value is less than the ”ground
truth.”

5.7 Software Requirements

You need to have the following software installed:

• Insight Toolkit 3.4.0 (the version used to develop the software)

• CMake 2.4

This document was created using LATEX, with the graph Figures produced byxmgrace, and diagrams created
in Kivio . Image data were visualized with ImageViewer from InsightApplications, andParaview.

6 Conclusions

We have presented a method for automated assessment of misalignment error. We have implemented 3
new ITK filters itk::LocalGrayscaleDistanceMapImageFilter, itk::LocalGrayscaleDistanceMapImageFilter
and itk::LocalDistanceMapSmoothingImageFilter for use in this automated assessment and have provided
the code for evaluation to reproduce the results presented in this paper. The results have shown RGHD
is more robust in terms of outliers than other methods discussed and can potentially improve the accuracy
of image alignment assessment. Furthermore, the local error estimation method we introduce has several
applications in registration assessment. First, it can yield a global similarity metric which can be used for
registration comparison or assessment of registration quality. Second, it can provide visual assessment of
local error estimation as shown in Figure8. Future versions of this work will include a templated version of
the deformation generator in addition to further studies ofparameter selection.

http://plasma-gate.weizmann.ac.il/Grace/
http://www.koffice.org/kivio/
http://paraview.org


14

7 Acknowledgments

Experimental images have been provided byBrainweb Simulated Brain DatabaseandInsight Toolkit. This
work was supported in part by NSF grants CSI-0719929 and CNS-0312980, and by the John Simon Guggen-
heim Memorial Foundation.

References

[1] N. Archip, O. Clatz, S. Whalen, D. Kacher, A. Fedorov, A. Kot, N. Chrisochoides, F. Jolesz, A. Golby,
P. Black, and S.K. Warfield. Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-
operative MRI for enhanced visualization and navigation inimage-guided neurosurgery.Neuroimage,
35:609–624, 2007.1, 2, 4.1

[2] N. Archip, S. Tatli, P. Morrison, F. Jolesz, S.K. Warfield, and S. Silverman. Non-rigid registration
of pre-procedural MR images with intra-procedural unenhanced CT images for improved targeting of
tumors during liver radiofrequency ablations.Proc. of MICCAI’07, pages 969–977, 2007.1, 2, 4.1

[3] B. Baudrier, F. Nicolier, G. Millon, and S. Ruan. Binary-image comparison with local-dissimilarity
classification.Pattern Recognition, 41:1461–1478, April 2008.1, 2, 2

[4] J. Canny. A computational approach to edge detection.IEEE Trans. Pattern Analysis and Machine
Intelligence, 8:679–714, 1986.2

[5] C. Cocosco, V. Kollokian, R. Kwan, and A. Evans. Brainweb: Online interface to a 3d MRI simulated
brain database.NeuroImage, 5(4), 1997.4

[6] D. Huttenlocher, D. Klanderman, and A. Rucklige. Comparing images using the Hausdorff distance.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9):850–863, September 1993.1,
2

[7] R. Kwan, A. Evans, and G. Pike. MRI simulation-based evaluation of image-processing and classifi-
cation methods.IEEE Transactions on Medical Imaging, 19(11):1085–97, November 1999.4

[8] F. Morain-Nicolier, S. Lebonvallet, E. Baudrier, and S.Ruan. Hausdorff distance based 3d quantifica-
tion of brain tumor evolution from MRI images.Proc. of 29th Annual Intl Conf of the IEEE EMBS,
pages 5597–5600, 2007.1

[9] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion.IEEE Trans. on
Pattern Analysis and Machine Intelligence, 12(7):629–639, July 1990.2
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