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Abstract

We present and implement an error estimation protocol itrthight Toolkit(ITK) for assessing the
accuracy of image alignment. We base this error estimatiarobust version of the Hausdorff Distance
(HD) metric applied to the recovered edges of the images. robest modifications we introduce to
the HD metric significantly reduce the amount of outliershie tocal distance error estimation. We
evaluate the accuracy of our protocol on synthetically deéa images. We provide the source code
and datasets to reproduce this evaluation. The proposdtbthet shown to improve error assessment
when it is compared with conventional HD methods. This apphohas many applications including
local estimation and visual assessment of registratiar amd registration parameter selection.
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1 Introduction

Assessing the accuracy of image alignment is a vital stepnage registration. Accuracy assessment is
essential for verification of registration quality, comipan of registration results, and registration parameter
selection. However, estimating registration accuracy @hallenging problem for the medical imaging
community. Clinical application of registration methodsjuire the validation of registration results, but
this validation can only be performed on cases where grounl is known (cadavers, invasive markers,
phantoms). The ability to assess registration quality of-ngid brain registration during image guided
neurosurgery is limited; an expert can assess quality kstilog a series of clearly identifiable landmarks
or regions in both intra-operative and pre-operative irsageguably, this may provide the best precision,
but the assessment is limited to the easily identifiablerf@arits. This method is also time consuming and
requires the involvement of an expert which may not be praktturing neurosurgery, when comparison of
thousands of registrations is necessary. Consider a $ocaeviaen the optimum parameters of a registration
method are not known, and we need to perform a large scalenptiia search for the best parameter
configuration. In this case, we are facing comparison of heatgland even thousands of registration results,
which in practice is only feasible using automatic or seuteanated approaches. We attempt to automate
this assessment process through the implementation dfdmssarity metrics.

Although, similarity metrics are no substitute for validat, similarity metrics have been used to assess reg-
istrations. They can provide confidence in the registratésult as well as criteria for comparison between
registration methods and paramete@ne common shortcoming of this approach is that similarigtrio
values do not provide quantification in terms of distancelipgical spaceThus, one has the ability to track
improvements among registrations but cannot speculatat & degree of misalignment

One approach to this problem is the use of Hausdorff Distédfy metric. The HD metric is derived from
Euclidean distances between point sets and thus relateddbdlignment distances unlike many other im-
age similarity measures. The original HD metric is highlpsgve to noise §], but variations of the metric
have been proposed to improve the robustness of the metsar#y of these modifications can be found
in [13, 3]. Even with the correspondence to physical space, HD bastdasihave scarcely been used for
assessment of image alignment. They were used by Moraiolibliet. al B] to quantify brain tumor evo-
lution and later by Archip et al.1] 2] to assess performance of non-rigid image registrationrahtMRI.

To our knowledge no formal study has been completed to iigastthe use of HD as an accuracy assess-
ment measure for image alignment. We evaluate existingicseind implement an automated assessment
approach based on a robust variation of the HD metric. Weigeathree ITK filters for local assessment
and implement an evaluation framework for comparison ad¢fraethods. Based on our findings, our robust
HD approach can significantly improve the results as congpréne previously used version of HD.



2 Methods

Problem: assess accuracy of alignment between two imdgasdJ.

We develop a method to solve this problem through estimatfopoint-wise alignment error. The HD
metric operates on sets of points, and in order to apply ihéogdroblem we need first to identify such
(feature) points in the images. Consistency of featuretpaditentification is essential to the robustness and
correctness of the metric. Thus, prior to local estimats@averal preprocessing steps must be employed on
the input images.

First, we smooth the input images using anisotropic diffagb] to filter out noise. Anisotropic diffusion
smoothing is chosen because it preserves features andth afmilarity metrics we examine are based
on comparison of features of images rather than intensifesond, adaptive contrast equalizati@g] [is
performed to improve the edge detection results. Thirdesdge identified with a Canny edge detection
filter [4]. Thresholds for Canny edge detection are adaptively &#lagsing binary search to have approxi-
mately the same number of edges in each image. The numbegefpsihts is controlled by changing the
upper and lower values of the threshold parameters in the ddtpctor 4]. All preprocessing steps were
implemented using ITK filters. The implementation detads e found in Sectioh.

Once the feature edges (points) are identified in both images
we can depart from the images and analyze the alignment ac-
curacy by working with the two sets of points. L&&andB be

the set of binary images created from extracting featuias fr l
| andJ, respectively, and = {aj,ap,...} andB = {bs,by,...}
be the corresponding set of feature points (non-zero pixels l

The directed HD between these two sets of points, B), is
defined as the maximum distance from any point in A to any l
point in B. The symmetric HDH (A, B) is the maximum of

b i | =] 2] —

both direct distance$]: |
h(A,B) = ryeix(d(a, B)),whered(a,B) = rgleiQHa— b| (1) I
H(A, B) = max(h(A,B),h(B,A)) )

Figure 1: Binary image (gray/white cells)
HD provides a global comparison of similarity, and was usedith corresponding grayscale image (D=3)
by Archip et al. [L, 2] to estimate the alignment of brain MR dvextgid.after nondriggistration.However,
the notion of local similarity is lostFor example, HD values can remain constant whether a setaafém
are misaligned in just one region or many regions. The losé&dce map (LDMap) proposed by Baudrier
et al. [3] is more suitable for point-wise error estimation.

The LDMap derives a local measure of dissimilarity for 2Dasinimages by comparing images locally with
a sliding window, wheréi (A, B) is used as a dissimilarity measure within the window.

vxeR3: Hioc(X) = [12(x) — 1g (x| x max(d(x,A),d(x,B)), )

1= where4 (x) is the voxel value of A at location x.

{ 1 ifax)#£0

0 otherwise



Remark 1. The conventional KA, B) can be derived by taking the maximum of the locgkHomparisons.
i.e., H(A,B) = max(Hioc(A,B))

LDMap is parameterless and yields a more descriptive measlwcal similarity than HD, but the LDMap
as described by Baudrier et aB] [does not improve robustness of local estimation. Ideallyare looking
for a measure which is equal or analalogus to the distanegekeatcorresponding points in the two images.
However, this cannot be assumed for HD, since HD has no p@iptint correspondence.

In this paper we extend the definition of LDMap by adding thtaroof correspondence by using a grayscale
modification of the HD. Grayscale HD was proposed by Zhao.€1.8] for matching 2D images corrupted
by noise. We extend this grayscale HD definition to 3D for makimage comparison and include it within
the LDMap definition.

Given two input binary imagesA and B, let A and B be the grayscale images whose voxel values are
initialized to the number of non-zero voxels in constanesirighborhood of the corresponding binary
image.A andB have the same size and boundary as the initial binary imagesneighborhood is isotropic
and of sizeD x D x D. Figurel provides a 2D example with = 3. This modification improves the sense of
point correspondence while calculating point distancesbse the corresponding point in the second image
is likely to have similar or same number of neighbor featw@s. The directed distamﬂ{ag,é) where

g is the grayscale value at voxalis defined as the minimum distance from pairtb any point inB with
grayscale value within some toleranteef g. The tolerance allows to adjust the sensitivity to differesin
edge images (i.e., from resampling, different imaging cevetc.).

d(%,é)zgnieglwg—bg/ll, g-t<g <g+t 4)

9
Using Equatiort we define the local grayscale HBHqc as follows:

¥x € R®: GHioc(X) = | L4 x) — Ls | x max(d(xg, A),d(xg, B)). (5)

Similar to the Hausdorff Distance, Grayscale Hausdorft@ise (GHD)GH (A, B) is defined as the maxi-
mum of the local calculation&H (A, B) = maxGHsc(A, B)).

In addition, we further improve the robustness of Grayskkasdorff Distance by applying robust statistics.
Let RGHoc(x) be the local Robust Grayscale Hausdorff Distance of imAgasdB at voxelx, and let\ be

an isotropic window of siz&x Sx Scentered around RGHqc(X) is defined as the robust average calculated
from the voxels insid&\i. Least trimmed squared]] is a reasonable choice for this robust average, but
other averages can be employed to improve robustness. Wie dedi Robust Grayscale Hausdorff Distance
(RGHD)RGH(A, B) = maxXRGHqc(A, B)).

The complete diagram of the alignment accuracy assessnaemgfvork, together with the parameters used
at each step, is depicted in Figute

3 Experimental Framework

We evaluate the effectiveness of the proposed accuracgsamseat methodology for non-rigid registration
of brain MRI using the synthetic ground truth data. First we the method described by Rogelj et &0][to

construct a synthetic deformation field. The synthetic da&dion field is applied to the original grayscale
image, followed by feature detection step performed on Bothoriginal and deformed images. The pro-
posed error recovery methodology is then employed to etitha misalignment between the original and
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the deformed images at the selected feature points. Thenigsignment value, which is the magnitude of
the synthetic deformation at a point, ideally should be etputhe error value recovered by the either of the
proposed assessment measures.

In order to create the synthetic deformation field, we firststruct a sparse point sample at the knots of
an isotropic sampling grid. This procedure is illustratedrigure3, where point sample is shown with red
circles. We assign a random deformation vector at each eétpeints, with the components of the vector
drawn from a Gaussian distribution parametrized by meanQ) and variancef). The dense deformation
field is constructed by using Thin Plate Splines interpotatat non-knot image points within the binary
mask.

The current implementation of the synthetic deformationas provided as a generic class. Instead, we
have separate tools to construct 2D and 3D deformation fidlde deformation fields are parametrized by
the sampling grid spacing and the variance of the Gausssribgition, which should be provided by the
user, together with the binary mask of the region of interdkt: ThinPlateSplineKernelTransforms used

to interpolate the values of the dense deformation field atgra pixels

We compare the local estimation methods with ground trutbr ersing two measures: distribution of error
and percentage of outliers. Ideally, the distribution afdloerror estimatesHjoc, GHioc andRGHgc) will
closely mimic the true error distribution. Also, a good estte of error should have minimum number of
outliers. Letd; be the local distance at point locatioomeasured by a local estimation method &nbe
the true error at the same point. We define outliers as any pwihere|d;, — e| > 2mm We choose 2 mm
because the deformation field is in physical space and theistBrite implementation is limited to 1 mm
image spacing. Thus, errors as large/&cannot be prevented.

4 Results

We present results for each of the described metrics (HD, GRIBHD) using the evaluation framework
described in Sectio&for both 3D and 2D images. The 3D images are not provided wisstubmission due
to possible copyright issues, but can be freely downloadad BrainWeb Simulated Brain Databage ).
We used the following settings for constructing the sinedatmage: Modality=T1, Slice thickness = 1mm,
Noise ={0%,9%¢ and RF=0%. The 2d images accompanying this paper were tedertlie example data
provided with ITK (ITK/Examples/Data/BrainProtonDerySliceBorder20.png, BrainProtonDensitySlice-
Border20Mask.png).

4.1 3D Image Results

The 3D results presented in this paper are produced usirigltbeing parameters. The variance parameter,
0, of the Synthetic Gaussian deformation was set to the integjaes between 1 and 12 to get increasingly
more complex deformations. The deformation grid spacing set at 30 mm for all test cases. These
settings create displacements with a maximum of 12 mm andenage between 1 and 4 mm, depending
on variance. Parameters for GHD include: neighborhood fizereation of grayscale images, sefie= 3

and tolerance foGHDjoc(X), t = 2. RGHD used a least timmed squares robust metric with pexge set

to 80% and window sizép)y = 11. We are able to incorporate the use of noisy images in caluation
because Brainweb provides a simulation of noisy imagesitarslwe evaluate local alignment assessment
between undeformed images with 0% noise and deformed inveife8% and 9% noise.

The error distributions for: the actual erréfioc, GHoc, andRGH for 0 = 5 of the synthetic deformation
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Figure 4: Distribution of the error and the HD, GHD, and RGHaues for the same synthetic deformation
case (3D BrainWeb image, Gaussian deformation, variance 5)
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Figure 6: Global error statistics (i.e. HD, 95%HD, RGHD) synthetically deformed 3D BrainWeb images
with and without noise. RGHD results were derived from RGHlalues.

are shown in Figurg. Other variances had similar results. The distributiorR&Hqc is an improved
approximation of the error distribution ovelfoc andGHjqc.

As expected the data in FiguEeindicates thaRGH,. is also the most robust method. Figlelisplays
the percentage of outliers in the set of local distance egitims. RGH,: remains at a low percentage of
outliers throughout the 3D testingHoc also provides improved robustness over kg estimations. For
best results, we recommend the us&&Hq. when deformations of magnitude 3mm to 7mm are present.

The error distribution and outliers help to build confidericghe robustness and accuracy of the local
estimates. Next we examine the use of robust local estimatiethods for non-rigid registration of brain
MRI comparison. Our hypothesis is that summary statisticko@al estimations provide a more robust
global statistic for comparison purposes. We test this thgms by examining the 95% percentile of the
local estimates at each variance and compare it with thdtsesbtained with the conventional HD and
the 95% PHD used by Archip et all,[2]. These results are presented in Figére RGHD tracks the
improvement well (i.e. increasing constantly w.r.t. eyrewen in the presence of noise. Moreover, RGHD
values consistently over-estimate (upper-bound) thertrean error. This is expected because the robust
metrics are based on the assumption that the majority akosithre underestimates and thus the calculated
mean increases. The use of other summary statistics (RMS), &t the local estimates may improve this
discrepancy, but the study of these statistics is left torautvork.

4.2 2D Image Results

We evaluate alignment assessment between the undefordetttormed 2D ITK images with the follow-
ing parameters. The deformation field is created wah= {1,2,3,..,12} and spacing = 30mm. Defor-
mation vectors with magnitude averaging between 1.5mm tm &are observed, magnitudes increase with
variance. A maximum deformation of 9mm occursat 12. The parameters for local estimation parame-
ters are based on the 3D results: neighborhoo@Hf,c, D = 3, tolerance of grayscale= 1, window size

of RGHqc, Wy = 11, and percentage = 80%. Adjustments of these parametgrsanae different results.
A more exhaustive study of parameter selection will be peréal in the future and reported in upcoming
updates of this document.



200— T T L — — 71 T T T T ' T 7 22007 T T T T T T T T T

L ™ T 1 2100~
1751 - Error Distribution | 2000 M Hloc Distribution

s 1900
1800
1501 Al lliin _ 1700
. 1600
r L 1500
125 n ™ dl n B 1400

1300
1200
B 1100F
1000
900
800
700
600
500
400
300
200

2 s

L LT 10 N 0 |
5 2 4 6 7 8 9
error, mm error,mm

[
P T

N
w
-3
~
©
©
=
5]
(<)
i
1S)

1500——————— 17— 80— 7 T T T T T T T T T T ]
14007 25 I RGHioc Distribution ]|
1300 f i

1200]-
1100F
1000}
900
800}
700
600
500[-
400f1
300

200 Hm H

100

ol . mm ’_\Iﬂﬂm—uﬂm‘ P R B
3 4 9

M
1 2 5 6 7 8 4 5
error, mm error,mm

GHloc Distribution

L L
8 9 10

o

Figure 7: Distribution of the error and the HD, GHD, and RGHaues for the same synthetic deformation
case (2D ITK image, Gaussian deformation, variance 8).

Similar to the results in 3D data, RGHD provides the closppt@ximation to true error distribution with 2D
images, see Figuré However, as seen in Figubghe outliers for RGHD are not as low with the 2D images.
Many factors could contribute to this difference includiihg parameters chosen and the deformation field
itself. Although, the variances were set to the same vathesjeformation magnitudes are slightly higher
on average in 2D image tests. The RGHD is still shown to be th&t mobust method compared.

We also examined the use of local estimation for visualizimg error in Figure8. We color the LDMap
created byRGHq. estimations, allowing visualization of the magnitude abethroughout the image.

5 Implementation

The presented local error estimation methods have beeretingpited in three n-dimensional image
to image filters: itk::LocalDistanceMaplmageFilter, itkocalGrayscaleDistanceMaplmageFilter, and
itk::LocalDistanceMapSmoothinglmageFilter. In additidhe entire alignment assessment process is im-
plemented in RunAssessment.cxx. In Figbree present the entire framework for our evaluation of local
assessment methods. Descriptions of each of these fill@thain use is described in the following sections.
Two helper classes were also implemented. itk::Countlirtge assists in the conversion of a binary image
to its grayscale counterpart by implementing a simple cauot non-zero voxels in a predefined neighbor-
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Figure 8: Local estimation of misalignment using RGHD. Lé&fhdeformed 2D image. Center: Deformed
image, Gaussian variance of 8 mm. Right: LDMap of the defaorianed undeformed images using RGHD,
color-coded, mm.

hood region. itk::errorStatistics is used to calculateedptve error statistics from the robust LDMap image,
see Figure.

5.1 itk::LocalDistanceMaplmageFilter

itkLocalDistanceMaplmagekFilter is the ITK implementatiof local HD metric as described in Secti@n
This filter is derived from the itk::ImageTolmage filter arsdtémplated over the two input images and the
output image. This filter requires two distance maps as inpoutputs a local distance map with values of
each voxel, x, equal tbljoc(X).

This processing step does not have any parameters, andiyheethods of relevance are those that provide
the set and get functionality for the filter inputs:

e Setlnputl(const TDistancel *), Getlnputl()

e Setlnput2(const TDistancel *), Getlnput2()

The class is multi-threaded and the entire algorithm isaioetl in ThreadedGenerateData().

5.2 itk::LocalGrayscaleDistanceMaplmageFilter

We implemented a local grayscale Hausdorff filter based endgfinition in Sectior2. Similar to the
previous filter, itk::LocalGrayscaleDistanceMaplimadtfiis derived from the itk::ImageTolmage filter
and is templated over its two input images and one output@mnagis filter takes two binary edge images
as input and outputs a local distance map with values of eaxl vx, equal tdGHjoc(X).

The first step is the construction of the grayscale image fir@rinput binary image, as shown in Figure
This step is facilitated by the helper class itk::Countletaitfer we implemented, and is parametrized by the
neighborhood radius value. As described in Secgdo find theGHoc(x) values we must perform a search
at each feature point, for the nearest neighbor featurdswalties within a given rangg,—t < g < g-t.
Exhaustive search is computationally expensive, instea@H,.(X) values are computed by performing an
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Figure 9: Components for evaluation of accuracy alignment.

expanding search with maximum radius, MaxDef, which is la@oparameter of the filter. MaxDef should
be chosen based on the estimated maximum deformation vaheeted. The indices for the expanding
search are determined in BeforeThreadedGenerateData().

The input methods for this filter are:

e Setlnputl(const TEdgel *), Getlnput2()
e Setlnput2(const TEdgel *), Getlnput2)

The following parameters for this filter can be manipulatedugh Set/Get functions:

e MaxDef: This controls the search radius for finding the nearesthirig should be set to the max-
imum deformation possible (e.g. 10% of adult brain size)ndffeature point is found within the
search radius, the voxel is set to an unrealistic value §-100

e Tol: the tolerance, t, for the local grayscale Hausdorff metrdigher values of t, will create smaller
distances, but the distictiveness of corresponding p@iiltslecrease.

e Radius: radius of the neighborhood sizB, (2 x radius+ 1 = D), for which the grayscale images are
created. Typical values used are 1 to 4.

The class is multi-threaded. The generation of grayscaség@s is performed in BeforeThreadedGenerate-
Data(), but the rest of the calculations for local Grays¢#lkis contained in ThreadedGenerateData().
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5.3 itk::LocalDistanceMapSmoothinglmageFilter

itk::LocalDistanceMapSmoothinglmageFilter is a smoogHilter designed specifically for post-processing
of the local distance map to obtain the valuesR@Hy. as described in Sectioch This filter applies a
robust average within a window centered around a featumg.p®he filter only takes into account feature
points. It accomplishes this by using “edge” (feature pdimtiges as a mask during computation. The local
robust grayscale Hausdorff distancB&Hqc) are computed by applying this filter to the local distancepma
created by itk::LocalGrayscaleDistanceMaplmageFilter.

The input methods for this filter are:

e Setlnputl(const TEdgel *), Getlnputl() the first edge imaggically used to create local distance
map

e Setlnput2(const TEdge2 *), Getlnput2() the second edggénigpically used to create local distance
map

e Setlnput3(const TDistancel *), Getlnput3() the localafise map
The parameters for this filter are manipulated by Get/Setncanas:

e Radius: the radius,(X radius+ 1= S), of the window used for robust averaging

e MinElements: the minimum number of feature points needed to computeageeif below minimum
assume there is no confidence in region and voxel set to istreahlue (-100).

e Percent: the percentage used for the robust statistic, (Le- percent is discarded in least timmed
squares)

Function GetRobustStat(std::vector) computes the rakrasistic on the distances inside the window. Cur-
rently, only LTS is implemented, but other robust statsstiould easily be added. As with the other filters,
this filter is multi-threaded and derived from the ImageTaga filter.

5.4 RunAssessment.cxx

An example code for running the complete alignment asse#smpecess on two images is pro-
vided in RunAssessment.cxx. Three basic components of theegs (preprocessing, local distance
map generation, robust smoothing) are each implemented.e praprocessing is performed using
three ITK filters: itk::CannyEdgeDetectionimageFiltak;:iCurvatureAnisotropicDiffusionimageFilter, and
itk::AdaptiveHistogramEqualizationImageFilter. Smiofy and contrast enhancement parameters are
fixed, based on experimental results. If necessary, thesengters can be changed manually. The re-
maining parameters are manipulated through the use of agcoafion file. The configuration file is the
only argument for the program. An example configuration §lpriovided in setup.dat.

Parameters listed in this file include: two input images, geanasks, percent of edges to be detected,
output file name, contrast enhancement flag (O=on, 1=offfricnehoice (HD, GHD, or RGHD), radius for
grayscale image creation, tolerance for GHD, maximum dedtion expected (radius of search window)
for GHD, radius of smoothing window, percentage for robuatistic, and minimum number of elements
for smoothing window.
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As well as creating a local distance map, RunAssessmenbutputs local distance estimation statistics to
the standard out. These global statistics include maxintaot,mean square, 90% percentile, mean, least
trimmed squares, and least median squares.

5.5 DFGenerator.cxx

The synthetic Gaussian deformation used to obtain thetsesuthe paper, as described in Sectiyns
implemented in DFGenerator.cxx. Two versions of DFGeetaave been implemented (2D and 3D). An
N-d implementation as an ITK class is left as a future worke Teformation vectors are selected using
itk::GaussianDistribution and then interpolation is darséng itk:: ThinPlateSplineKernelTransform. The
deformation field is controlled through the spacing andarae arguments. The program outputs all of the
details necessary to recreate the deformation: the detbrmage, deformation field, deformed mask, and
deformation norm.

5.6 Evaluation.cxx

A simple evaluation tool is also included, evaluation.c¥kis tool is used to compare “ground truth” (i.e.
deformation field norm) to local distance estimation. Thegpam iterates through the two input images,
comparing the difference in corresponding voxels, andutales the percentage of outliers as defined in
Section2. In addition, this program outputs the percentage of astlteat are underestimates. An un-
derestimate is defined as any voxel in the local distancenatin whose value is less than the "ground
truth.”

5.7 Software Requirements
You need to have the following software installed:

¢ Insight Toolkit 3.4.0 (the version used to develop the safty
e CMake 2.4

This document was created usiA@gX, with the graph Figures produced kyngrace and diagrams created
in Kivio. Image data were visualized with ImageViewer from Insigbpphications, andParaview

6 Conclusions

We have presented a method for automated assessment ofgmisaht error. We have implemented 3
new ITK filters itk::LocalGrayscaleDistanceMaplmageéiijtitk::LocalGrayscaleDistanceMaplmageFilter
and itk::LocalDistanceMapSmoothinglmageFilter for usehis automated assessment and have provided
the code for evaluation to reproduce the results presentehis paper. The results have shown RGHD
is more robust in terms of outliers than other methods dssdisind can potentially improve the accuracy
of image alignment assessment. Furthermore, the local estomation method we introduce has several
applications in registration assessment. First, it caluyaeglobal similarity metric which can be used for
registration comparison or assessment of registratiotitgu&econd, it can provide visual assessment of
local error estimation as shown in Figu8eFuture versions of this work will include a templated vensof

the deformation generator in addition to further studiepasbmeter selection.


http://plasma-gate.weizmann.ac.il/Grace/
http://www.koffice.org/kivio/
http://paraview.org
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