
A small rework for the Gaussian Derivative
Image Function

Release 2.0

Dan Mueller1

February 28, 2006

1Queensland University of Technology, Brisbane, Australia

Abstract

The itk::GaussianDerivativeImageFunction computes the derivative at the specified physical or

pixel location. Unfortunately it has a number of deficiencies, for which I suggest possible solutions.

Keywords: ITK, ImageFunctions, GaussianDerivativeImageFunction

1 The Problem

Gradient or derivative information is important for many image processing tasks. The Insight Toolkit (ITK)

has various means to compute the derivative; both of a whole image, and at specific locations. We concern

ourselves with itk::ImageFunctions which allow users to compute the derivative at specified physical

or pixel locations. The itk::CentralDifferenceImageFunction uses the central differences method to

compute gradient information; however, while useful for some applications, it can suffer from noise artefacts

due to small intensity variations. The itk::GaussianDerivativeImageFunction overcomes this problem

by applying a Gaussian smoothing operator before calculating the gradient information.

Recently a bug (# 2891) was reported which highlighted the problem that itk::GaussianDerivative-

ImageFunction did not correctly handle points in physical space. This bug was fixed and committed as

r1.14 (see ITK CVS). Unfortunately (as far as I can tell), while this solved the initial problem of evaluating

points in physical space, it introduced a new issue of no longer evaluating the derivative at true continu-

ous locations. In the fix (r1.14) all continuous points/indices are now cast to the nearest discrete index.

Previously (r1.13) the method RecomputeContinuousGaussianKernel(double* offset) was invoked

by Evaluate(..) with the difference between the continuous and discrete point passed in as the offset.

I assume this offset was used to interpolate at continuous points. The method RecomputeContinuous-

GaussianKernel(double* offset) no longer being invoked.

Furthermore, the itk::GaussianDerivativeImageFunction contains repetitive code blocks (which are

discouraged by extreme programming practices). Finally, it appears this class is only implemented for

images with 2 dimensions.

http://www.itk.org/Bug/bug.php?op=show&bugid=2891
http://www.itk.org/cgi-bin/viewcvs.cgi/Code/Common/itkGaussianDerivativeImageFunction.txx?root=Insight&r1=1.13&r2=1.14

A small rework for the Gaussian Derivative Image Function 2

2 The Proposed Solution

I propose a slight rework for this class which addresses the issues of code duplication, and evaluating the

derivative at true continuous locations:

1. Remove the duplicated RecomputeContinuousGaussianKernel() method and all associated calls

by the SetSigma(..) and SetExtent(..) methods. NOTE: keep the RecomputeContinuous-

GaussianKernel(double* offset) method.

2. Remove the m OperatorArray field, and reference in PrintSelf(..).

3. Create a protected method EvaluateAtIndexWithOffset(IndexType index, double* offset).

4. Change the EvaluateAtIndex(..) method to create an offset of all zeros and then call Evaluate-

AtIndexWithOffset(..).

5. Change the new (r1.14) Evaluate(..) method, but compute the offset before calling EvaluateAt-

IndexWithOffset(..).

6. Change the new (r1.14) EvaluateAtContinuousIndex(..) method, but as above compute the offset

before calling EvaluateAtIndexWithOffset(..).

These proposed changes, to the best of my knowledge, would allow for the itk::GaussianDerivative-

ImageFunction to compute derivative information at true continuous points (ie. not casting to the nearest

Index). All evaluation would now be handled by the EvaluateAtIndexWithOffset(..) method, avoiding

code duplication. These changes would introduce some limited overhead for evaluating the function at exact

(ie. discrete) indices.

3 Conclusions

The proposed changes address the discussed issues with the itk::GaussianDerivativeImageFunction.

These changes do not change the API and therefore should adhere to ITK’s backwards compatibility require-

ments. It should also be noted that this class is currently only implemented for images with 2 dimensions. I

have not addressed this dimensionality issue in this article (any takers?).

A small rework for the Gaussian Derivative Image Function 3

Appendix A Source code

1 /*===

2

3 Program: Insight Segmentation & Registration Toolkit

4 Module: $RCSfile: itkGaussianDerivativeImageFunction.h,v $

5 Language: C++

6 Date: $Date: 2006/02/17 $

7 Version: $Revision: 1.15 $

8

9 Copyright (c) Insight Software Consortium. All rights reserved.

10 See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

11

12 This software is distributed WITHOUT ANY WARRANTY; without even

13 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

14 PURPOSE. See the above copyright notices for more information.

15

16 ===*/

17 #ifndef _itkGaussianDerivativeImageFunction_h

18 #define _itkGaussianDerivativeImageFunction_h

19

20 #include "itkNeighborhoodOperatorImageFunction.h"

21 #include "itkImageFunction .h"

22 #include "itkGaussianDerivativeSpatialFunction.h"

23 #include "itkGaussianSpatialFunction .h"

24

25 namespace itk

26 {

27

28 /**
29 * \class GaussianDerivativeImageFunction

30 * \brief Compute the gaussian derivatives of an the image at a specific

31 * location in space, i.e. point, index or continuous index.

32 * This class is templated over the input image type.

33 * \sa NeighborhoodOperator

34 * \sa ImageFunction

35 */

36 template <class TInputImage ,class TOutput=double>

37 class ITK_EXPORT GaussianDerivativeImageFunction :

38 public ImageFunction < TInputImage ,

39 Vector <TOutput ,::itk::GetImageDimension <TInputImage >::ImageDimension >,

40 TOutput >

41 {

42 public:

43

44 /**Standard "Self" typedef */

45 typedef GaussianDerivativeImageFunction Self;

46

47 /** Standard "Superclass" typedef*/

48 typedef ImageFunction <TInputImage ,

49 Vector <TOutput ,::itk::GetImageDimension <TInputImage >::ImageDimension >,

50 TOutput > Superclass;

51

52 /** Smart pointer typedef support. */

53 typedef SmartPointer <Self > Pointer;

54 typedef SmartPointer <const Self > ConstPointer ;

55

56 /** Method for creation through the object factory.*/

A small rework for the Gaussian Derivative Image Function 4

57 itkNewMacro (Self);

58

59 /** Run-time type information (and related methods). */

60 itkTypeMacro (GaussianDerivativeImageFunction , ImageFunction);

61

62 /** InputImageType typedef support.*/

63 typedef TInputImage InputImageType ;

64 typedef typename InputImageType ::PixelType InputPixelType ;

65 typedef typename InputImageType ::IndexType IndexType;

66

67 /** Dimension of the underlying image. */

68 itkStaticConstMacro (ImageDimension2 , unsigned int,

69 InputImageType :: ImageDimension);

70

71 typedef ContinuousIndex <TOutput ,itkGetStaticConstMacro (ImageDimension2)>

72 ContinuousIndexType ;

73

74

75 typedef Neighborhood <InputPixelType , itkGetStaticConstMacro (ImageDimension2)>

76 NeighborhoodType ;

77 typedef Neighborhood <TOutput , itkGetStaticConstMacro (ImageDimension2)>

78 OperatorNeighborhoodType ;

79

80 typedef Vector <TOutput ,itkGetStaticConstMacro (ImageDimension2)> VectorType;

81 typedef typename Superclass ::OutputType OutputType ;

82 typedef FixedArray <OperatorNeighborhoodType ,

83 2* itkGetStaticConstMacro (ImageDimension2)> OperatorArrayType ;

84 typedef NeighborhoodOperatorImageFunction <InputImageType , TOutput >

85 OperatorImageFunctionType ;

86 typedef typename OperatorImageFunctionType ::Pointer OperatorImageFunctionPointer ;

87

88 typedef GaussianDerivativeSpatialFunction <TOutput ,1>

89 GaussianDerivativeFunctionType;

90 typedef typename GaussianDerivativeFunctionType::Pointer

91 GaussianDerivativeFunctionPointer;

92

93 typedef GaussianSpatialFunction <TOutput ,1> GaussianFunctionType ;

94 typedef typename GaussianFunctionType ::Pointer GaussianFunctionPointer ;

95

96 /** Point typedef support. */

97 typedef Point <TOutput ,itkGetStaticConstMacro (ImageDimension2)> PointType;

98

99 /** Evalutate the in the given dimension at specified point */

100 virtual OutputType Evaluate(const PointType& point) const;

101

102 /** Evaluate the function at specified Index position*/

103 virtual OutputType EvaluateAtIndex (const IndexType & index) const;

104

105 /** Evaluate the function at specified ContinousIndex position.*/

106 virtual OutputType EvaluateAtContinuousIndex (

107 const ContinuousIndexType & index) const;

108

109 /** The variance for the discrete Gaussian kernel. Sets the variance

110 * independently for each dimension, but

111 * see also SetVariance(const double v). The default is 0.0 in each

112 * dimension. If UseImageSpacing is true, the units are the physical units

113 * of your image. If UseImageSpacing is false then the units are pixels.*/

114 void SetSigma(const double* sigma);

115 void SetSigma(const double sigma);

A small rework for the Gaussian Derivative Image Function 5

116 const double* GetSigma () const {return m_Sigma;}

117

118 /** Set the extent of the kernel */

119 void SetExtent(const double* extent);

120 void SetExtent(const double extent);

121 const double* GetExtent () const {return m_Extent;}

122

123 /** Set the input image.

124 * \warning this method caches BufferedRegion information.

125 * If the BufferedRegion has changed, user must call

126 * SetInputImage again to update cached values. */

127 virtual void SetInputImage (const InputImageType * ptr);

128

129 protected:

130 GaussianDerivativeImageFunction();

131 GaussianDerivativeImageFunction(const Self&){};

132 ˜GaussianDerivativeImageFunction(){};

133 void operator=(const Self&){};

134 void PrintSelf(std::ostream& os, Indent indent) const;

135

136 /** The main worker function for evaluating the function at a given

137 * discrete index and offset (NOTE: the offset will be zeros if

138 * we are evaluating at an exact discrete index). */

139 virtual OutputType EvaluateAtIndexWithOffset (const IndexType & index ,

140 const double* offset) const;

141 void RecomputeContinuousGaussianKernel(const double* offset) const;

142

143 private:

144

145 double m_Sigma[ImageDimension2];

146

147 /** Array of 1D operators. Contains a derivative kernel and a gaussian

148 * kernel for each dimension */

149 mutable OperatorArrayType m_ContinuousOperatorArray ;

150

151 /** OperatorImageFunction */

152 OperatorImageFunctionPointer m_OperatorImageFunction ;

153 double m_Extent[ImageDimension2];

154

155 /** Flag to indicate whether to use image spacing */

156 bool m_UseImageSpacing ;

157

158 /** Neighborhood Image Function */

159 GaussianDerivativeFunctionPointer m_GaussianDerivativeFunction ;

160 GaussianFunctionPointer m_GaussianFunction ;

161

162 };

163

164 } // namespace itk

165

166 #ifndef ITK_MANUAL_INSTANTIATION

167 #include "itkGaussianDerivativeImageFunction.txx"

168 #endif

169

170 #endif

Listing 1: Proposed itkGaussianDerivativeImageFunction.h

A small rework for the Gaussian Derivative Image Function 6

1 /*===

2

3 Program: Insight Segmentation & Registration Toolkit

4 Module: $RCSfile: itkGaussianDerivativeImageFunction.txx,v $

5 Language: C++

6 Date: $Date: 2006/02/17 $

7 Version: $Revision: 1.15 $

8

9 Copyright (c) Insight Software Consortium. All rights reserved.

10 See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

11

12 This software is distributed WITHOUT ANY WARRANTY; without even

13 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

14 PURPOSE. See the above copyright notices for more information.

15

16 ===*/

17 #ifndef __itkGaussianDerivativeImageFunction_txx

18 #define __itkGaussianDerivativeImageFunction_txx

19

20 #include "itkGaussianDerivativeImageFunction.h"

21

22 namespace itk

23 {

24

25 /** Set the Input Image */

26 template <class TInputImage , class TOutput >

27 GaussianDerivativeImageFunction <TInputImage ,TOutput >

28 :: GaussianDerivativeImageFunction()

29 {

30 typename GaussianFunctionType :: ArrayType mean;

31 mean [0]=0.0;

32 for(unsigned int i=0;i<itkGetStaticConstMacro (ImageDimension2);i++)

33 {

34 m_Sigma[i] = 1.0;

35 m_Extent[i] = 1.0;

36 }

37 m_UseImageSpacing = true;

38 m_GaussianDerivativeFunction = GaussianDerivativeFunctionType::New();

39 m_GaussianFunction = GaussianFunctionType ::New();

40 m_OperatorImageFunction = OperatorImageFunctionType ::New();

41 m_GaussianFunction ->SetMean(mean);

42 m_GaussianFunction ->SetNormalized (false); // faster

43 m_GaussianDerivativeFunction ->SetNormalized (false); // faster

44 }

45

46 /** Print self method */

47 template <class TInputImage , class TOutput >

48 void

49 GaussianDerivativeImageFunction <TInputImage ,TOutput >

50 :: PrintSelf(std::ostream& os, Indent indent) const

51 {

52 this->Superclass ::PrintSelf(os,indent);

53 os << indent << "UseImageSpacing : " << m_UseImageSpacing << std::endl;

54

55 os << indent << "Sigma: " << m_Sigma << std::endl;

56 os << indent << "Extent: " << m_Extent << std::endl;

57

58 os << indent << "ContinuousOperatorArray : "

A small rework for the Gaussian Derivative Image Function 7

59 << m_ContinuousOperatorArray << std::endl;

60 os << indent << "OperatorImageFunction : "

61 << m_OperatorImageFunction << std::endl;

62 os << indent << "GaussianDerivativeFunction : "

63 << m_GaussianDerivativeFunction << std::endl;

64 os << indent << "GaussianFunction : "

65 << m_GaussianFunction << std::endl;

66 }

67

68 /** Set the input image */

69 template <class TInputImage , class TOutput >

70 void

71 GaussianDerivativeImageFunction <TInputImage ,TOutput >

72 :: SetInputImage (const InputImageType * ptr)

73 {

74 Superclass ::SetInputImage (ptr);

75 m_OperatorImageFunction ->SetInputImage (ptr);

76 }

77

78 /** Set the variance of the gaussian in each direction */

79 template <class TInputImage , class TOutput >

80 void

81 GaussianDerivativeImageFunction <TInputImage ,TOutput >

82 :: SetSigma(const double* sigma)

83 {

84 unsigned int i;

85 for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i++)

86 {

87 if (sigma[i] != m_Sigma[i])

88 {

89 break;

90 }

91 }

92 if (i < itkGetStaticConstMacro (ImageDimension2))

93 {

94 for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i++)

95 {

96 m_Sigma[i] = sigma[i];

97 }

98 }

99 }

100

101

102 /** Set the variance of the gaussian in each direction */

103 template <class TInputImage , class TOutput >

104 void

105 GaussianDerivativeImageFunction <TInputImage ,TOutput >

106 :: SetSigma (const double sigma)

107 {

108 unsigned int i;

109 for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i++)

110 {

111 if (sigma != m_Sigma[i])

112 {

113 break;

114 }

115 }

116 if (i < itkGetStaticConstMacro (ImageDimension2))

117 {

A small rework for the Gaussian Derivative Image Function 8

118 for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i++)

119 {

120 m_Sigma[i] = sigma;

121 }

122 }

123 }

124

125 /** Set the extent of the gaussian in each direction */

126 template <class TInputImage , class TOutput >

127 void

128 GaussianDerivativeImageFunction <TInputImage ,TOutput >

129 :: SetExtent(const double* extent)

130 {

131 unsigned int i;

132 for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i++)

133 {

134 if (extent[i] != m_Extent[i])

135 {

136 break;

137 }

138 }

139 if (i < itkGetStaticConstMacro (ImageDimension2))

140 {

141 for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i++)

142 {

143 m_Extent[i] = extent[i];

144 }

145 }

146 }

147

148 /** Set the extent of the gaussian in each direction */

149 template <class TInputImage , class TOutput >

150 void

151 GaussianDerivativeImageFunction <TInputImage ,TOutput >

152 :: SetExtent(const double extent)

153 {

154 unsigned int i;

155 for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i++)

156 {

157 if (extent != m_Extent[i])

158 {

159 break;

160 }

161 }

162 if (i < itkGetStaticConstMacro (ImageDimension2))

163 {

164 for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i++)

165 {

166 m_Extent[i] = extent;

167 }

168 }

169 }

170

171 /** Evaluate the function at the given index, with the given offset */

172 template <class TInputImage , class TOutput >

173 typename GaussianDerivativeImageFunction <TInputImage ,TOutput >:: OutputType

174 GaussianDerivativeImageFunction <TInputImage ,TOutput >

175 :: EvaluateAtIndexWithOffset (const IndexType & index ,

176 const double* offset) const

A small rework for the Gaussian Derivative Image Function 9

177 {

178 OutputType gradient;

179

180 //Recompute the kernel

181 this->RecomputeContinuousGaussianKernel(offset);

182

183 //Compute gradient value

184 for(unsigned int idim =0; idim <itkGetStaticConstMacro (ImageDimension2); idim ++)

185 {

186 // Apply each gaussian kernel to a subset of the image

187 InputPixelType pixel = this->GetInputImage ()->GetPixel(index);

188 double value = pixel;

189

190 // Apply Gaussian blurring first

191 for(unsigned int jdim =0;jdim <itkGetStaticConstMacro (ImageDimension2); jdim ++)

192 {

193 if(idim != jdim)

194 {

195 unsigned int id= 2*jdim +1; // select only gaussian kernel;

196 unsigned int center =

197 (unsigned int)((m_ContinuousOperatorArray [id]. GetSize()[jdim]-1)/2);

198 TOutput centerval = m_ContinuousOperatorArray [id][center];

199 m_ContinuousOperatorArray [id][center] = 0;

200 m_OperatorImageFunction ->SetOperator (m_ContinuousOperatorArray [id]);

201 value = m_OperatorImageFunction ->EvaluateAtIndex (index)+centerval*value;

202 }

203 }

204

205 // Apply derivative in the direction

206 signed int center =

207 (unsigned int)((m_ContinuousOperatorArray [2*idim].GetSize()[idim]-1)/2);

208 TOutput centerval = m_ContinuousOperatorArray [2*idim][center];

209 m_ContinuousOperatorArray [2*idim][center] = 0;

210 m_OperatorImageFunction ->SetOperator (m_ContinuousOperatorArray [2*idim]);

211 value = m_OperatorImageFunction ->EvaluateAtIndex (index)+centerval*value;

212

213 gradient[idim] = value;

214 }

215

216 return gradient;

217 }

218

219 /** Recompute the gaussian kernel used to evaluate indexes

220 * The variance should be uniform */

221 template <class TInputImage , class TOutput >

222 void

223 GaussianDerivativeImageFunction <TInputImage ,TOutput >

224 :: RecomputeContinuousGaussianKernel(

225 const double* offset) const

226 {

227

228 unsigned int direction = 0;

229 for(unsigned int op = 0; op<itkGetStaticConstMacro (ImageDimension2)*2; op++)

230 {

231 // Set the derivative of the gaussian first

232 OperatorNeighborhoodType dogNeighborhood ;

233 typename GaussianDerivativeFunctionType:: InputType pt;

234 typename OperatorNeighborhoodType ::SizeType size;

235 size.Fill (0);

A small rework for the Gaussian Derivative Image Function 10

236 size[direction] = (unsigned long)(m_Sigma[direction]*m_Extent[direction]);

237 dogNeighborhood .SetRadius(size);

238

239 typename GaussianDerivativeFunctionType:: ArrayType s;

240 s[0] = m_Sigma[direction];

241 m_GaussianDerivativeFunction ->SetSigma(s);

242

243 typename OperatorNeighborhoodType ::Iterator it = dogNeighborhood .Begin();

244

245 unsigned int i=0;

246 while(it != dogNeighborhood .End())

247 {

248 pt[0]= dogNeighborhood .GetOffset(i)[direction]-offset[direction];

249

250 if((m_UseImageSpacing == true) && (this->GetInputImage ()))

251 {

252 if (this->GetInputImage ()->GetSpacing ()[direction] == 0.0)

253 {

254 itkExceptionMacro (<< "Pixel spacing cannot be zero");

255 }

256 else

257 {

258 pt[0] *= this->GetInputImage ()->GetSpacing ()[direction];

259 }

260 }

261 (*it)= m_GaussianDerivativeFunction ->Evaluate(pt);

262 i++;

263 it++;

264 }

265

266 m_ContinuousOperatorArray [op] = dogNeighborhood ;

267

268 // Set the gaussian operator

269 m_GaussianFunction ->SetSigma(s);

270 op++;

271 OperatorNeighborhoodType gaussianNeighborhood ;

272 gaussianNeighborhood .SetRadius(size);

273

274 it = gaussianNeighborhood .Begin();

275

276 i=0;

277 double sum = 0;

278 while(it != gaussianNeighborhood .End())

279 {

280 pt[0]= gaussianNeighborhood .GetOffset(i)[direction]-offset[direction];

281

282 if((m_UseImageSpacing == true) && (this->GetInputImage ()))

283 {

284 if (this->GetInputImage ()->GetSpacing ()[direction] == 0.0)

285 {

286 itkExceptionMacro (<< "Pixel spacing cannot be zero");

287 }

288 else

289 {

290 pt[0] *= this->GetInputImage ()->GetSpacing ()[direction];

291 }

292 }

293

294 (*it)= m_GaussianFunction ->Evaluate(pt);

A small rework for the Gaussian Derivative Image Function 11

295 sum += (*it);

296 i++;

297 it++;

298 }

299

300 // Make the filter DC-Constant

301 it = gaussianNeighborhood .Begin();

302 while(it != gaussianNeighborhood .End())

303 {

304 (*it) /= sum;

305 it++;

306 }

307

308 m_ContinuousOperatorArray [op] = gaussianNeighborhood ;

309 direction ++;

310 }

311 }

312

313 /** Evaluate the function at the specifed index */

314 template <class TInputImage , class TOutput >

315 typename GaussianDerivativeImageFunction <TInputImage ,TOutput >:: OutputType

316 GaussianDerivativeImageFunction <TInputImage ,TOutput >

317 :: EvaluateAtIndex (const IndexType& index) const

318 {

319 //Compute offset

320 double offset[itkGetStaticConstMacro (ImageDimension2)];

321 for(unsigned int i=0; i<itkGetStaticConstMacro (ImageDimension2);i++)

322 {

323 offset[i] = 0;

324 }

325

326 //Evaluate

327 return this->EvaluateAtIndexWithOffset (index , offset);

328 }

329

330 /** Evaluate the function at the specifed point */

331 template <class TInputImage , class TOutput >

332 typename GaussianDerivativeImageFunction <TInputImage ,TOutput >:: OutputType

333 GaussianDerivativeImageFunction <TInputImage ,TOutput >

334 :: Evaluate(const PointType& point) const

335 {

336 //Convert Point to ContinuousIndex then Index

337 ContinuousIndexType cindex;

338 IndexType index;

339 this->ConvertPointToContinuousIndex(point , cindex)

340 this->ConvertContinousIndexToNearestIndex(cindex , index)

341

342 //Compute offset

343 double offset[itkGetStaticConstMacro (ImageDimension2)];

344 for(unsigned int i=0; i<itkGetStaticConstMacro (ImageDimension2);i++)

345 {

346 offset[i] = cindex[i] - index[i];

347 }

348

349 //Evaluate

350 return this->EvaluateAtIndexWithOffset (index , offset);

351 }

352

353 /** Evaluate the function at specified ContinousIndex position.*/

A small rework for the Gaussian Derivative Image Function 12

354 template <class TInputImage , class TOutput >

355 typename GaussianDerivativeImageFunction <TInputImage ,TOutput >:: OutputType

356 GaussianDerivativeImageFunction <TInputImage ,TOutput >

357 :: EvaluateAtContinuousIndex (const ContinuousIndexType & cindex) const

358 {

359 //Convert cindex to Index

360 IndexType index;

361 this->ConvertContinuousIndexToNearestIndex(cindex , index);

362

363 //Compute offset

364 double offset[itkGetStaticConstMacro (ImageDimension2)];

365 for(unsigned int i=0; i<itkGetStaticConstMacro (ImageDimension2);i++)

366 {

367 offset[i] = cindex[i] - index[i];

368 }

369

370 //Evaluate

371 return this->EvaluateAtIndexWithOffset (index , offset);

372 }

373

374 } // end namespace itk

375

376 #endif

Listing 2: Proposed itkGaussianDerivativeImageFunction.txx

	1 The Problem
	2 The Proposed Solution
	3 Conclusions
	Appendix A Source code

